

Willing seller market design for congestion revenue rights

Department of Market Monitoring March 3, 2025

The CRR auction design is fundamentally flawed

- ISO auctions off the rights to congestion revenues that otherwise flow back to transmission ratepayers, mainly Load Serving Entities (LSEs) who pay the Transmission Access Charge (TAC)
- ISO essentially offers to sell CRRs backed by transmission ratepayers at \$0 bid price in auction
- Auction revenues are systematically less than CRR payouts every year since the auction started in 2009
 - Losses averaged \$114 million per year from 2012 to 2018
 - Losses averaged \$62 million per year from 2019 to 2023
- A large majority of losses paid to purely financial traders, rather than entities that might be buying CRRs as hedges

Changes made in 2019 have not solved the problem

- Changes made by ISO in 2019:
 - Transmission modeling improvements
 - Reduce global de-rate factor from 75% to 65% in annual process
 - Limit nodes at which CRRs can be purchased
 - Deficit offset charges (limits CRR payouts when congestion revenues insufficient)
- Reduction in CRR losses since 2019 have come mostly from *deficit offset charges* levied on CRR holders
- Deficit offset charges mean that CRRs are not fully funded
 - » Non-LSEs getting charged ~30% of "gross" CRR payouts
 - » LSEs getting charged ~24% of "gross" CRR payouts

Most or all of reduction in losses are from deficit offset charges – which significantly reduce the "hedging" value of CRRs for all participants

Transmission ratepayers still losing about \$62 million per year from auctioned CRRs since 2019 changes

California ISO

WEM

CRRs still selling for \$.67 per \$1 of payouts

California ISO

WEM

Proposed new CRR financial network market design

- CRR allocation method to LSEs can remain unchanged (but increased)
 - LSEs can offer allocated CRRs for sale in willing seller CRR market
- Treat CRR auction like standard financial market
 - CRR auction transactions only between willing counterparties with full financial exposure to contract outcomes
 - Do not rely on day-ahead congestion revenues to fund CRR payouts
 - No need for deficit offsets (or to make CRRs financially firm with outside funds)
 - LSEs can continue to offer allocated CRRs for sale in auction
- ISO serves as standard central counterparty clearing house
 - Manages counterparty credit risk
 - No direct financial exposure to the spot market

Proposed market for CRRs between willing counterparties

- Market between willing counterparties removes the core auction design flaw
 - ISO does not offer to sell CRRs backed by ratepayers at \$0 bid price
 - All CRRs sold are from willing sellers who directly back the CRRs financially
 - Contracts are financially firm and fully funded by counterparty (no need for deficit offset charges or other mechanism to recover revenue insufficiency)
- ISO, MSC, and many stakeholders asserted that a market of willing counterparties will not clear many contracts without the ISO also selling CRRs through a transmission model
- Analysis shows this is not true and a CRR market based on willing counterparties can work
 - Using actual CRR bids from 2017-2018, a willing counterparty market design cleared a significant amount of CRRs
 - Counterflow CRRs (which provide hedges) would have to be "sold" by financial entities and LSEs under willing seller design

Physical CRR network model formulation (current)

Financial CRR network model formulation (used in analysis)

s.t.

 $x_i = 0$

(i) As-bid valuations: $v_{ij}^{k,s}(z) = \begin{cases} b_{ij}^{k,s} + \left(\frac{b_{ij}^{k,s+1} - b_{ij}^{k,s}}{q_{ij}^{k,s+1} - q_{ij}^{k,s}}\right) \times z & \text{if } q_{ij}^{k,s+1} > q_{ij}^{k,s} \\ b_{ii}^{k,s} & \text{if } q_{ij}^{k,s+1} = q_{ij}^{k,s} \end{cases}$

Net injection created by CRRs at each node/hub must = 0

(ii) Bounds on quantity increment per bid curve segment:

 $0 \le x_{ij}^{k,s} \le q_{ij}^{k,s+1} - q_{ij}^{k,s} \qquad \forall k, i \ne j, s < S_{ij,k}$

(iii) Financial transmission capacity limits:

where

 $x_{i} = \sum_{k=1}^{K} \left(\sum_{\substack{j \neq i \\ \text{Source at node } i}}^{S_{ij,k}-1} x_{ij}^{k,s} - \sum_{\substack{n \neq i \\ n \neq i}}^{S_{ni,k}-1} x_{ni}^{k,s} \right) \quad \forall i$

Net injection at node i

California ISO | WEM

 $\forall k, i \neq j, s < S_{ii,k}$

Physical vs. financial CRR network models

Suppose we want to clear 1 MW of a CRR from A to B

Physical network CRRs treated as physical power. Must respect: Power flow physics + transmission capacity limits

Financial network CRRs treated as financial assets. Must respect: Enough market participants as financial counterparties

All nodes in black have zero net injections

Why did we use 2017-2018 data to assess willing seller market design?

- Changes made in 2019 would be <u>eliminated</u> under willing seller market design
- These changes make CRR bids since 2019 very unrepresentative of what would be expected under willing seller:
 - Amount of CRRs allocated to LSEs (many of which are voluntarily resold in auction) were significantly reduced
 - Bids for counterflow CRRs (from a load point to a generation node) were prohibited, so financial entities cannot submit bids to directly sell CRRs that can provide hedges for congestion
 - Deficit offset charges reduce payout of CRRs, so bid prices for CRRs are lower than bid prices expected under willing seller design
- Consequently, 2017-2018 CRRs bids are most recent data that can be used to provide a realistic assessment of how willing seller market would work

Analysis of willing seller design Total cleared CRR contracts during 2017-2018 (TWh)

Page 13

Analysis of willing seller design Net profits/losses by participant group

Page 14

Large volumes of negatively priced CRRs clearing under the willing seller design are "sold" by LSEs and non-LSEs

Auction revenues from negatively priced CRRs

Negative values = payments received from CAISO in auction from negatively priced CRRs

	Auction Revenues		% of 2017-18	Share of auction revenue	
	2017-2018 Wi	lling Seller	clearing willing	2017-2018	Willing Seller
Financial	-\$65	-\$62	97%	39%	40%
Marketer	-\$19	-\$18	98%	11%	12%
Generator	-\$8	-\$7	81%	5%	4%
Load	-\$74	-\$68	92%	45%	44%
Total	-\$165	-\$156	94%	100%	100%

CRR payments made for negatively priced CRRs

Negative values = payments made to CAISO for congestion on negatively priced CRRs "sold" in auction

	Day-Ahead Payouts		% of 2017-18	Share of day-ahead payouts				
	2017-2018 Wi	lling Seller	clearing willing	2017-2018	Willing Seller			
Financial	-\$120	-\$83	69%	41%	38%			
Marketer	-\$57	-\$37	66%	19%	17%			
Generator	-\$13	-\$7	52%	5%	3%			
Load	-\$101	-\$90	90%	35%	41%			
Total	-\$291	-\$218	75%	100%	100%			

* Willing Seller Report, pp 20-21

ISO Public

Willing seller analysis (2017-2018)

Auction payments and CRR payouts by participant

Financial entities

Willing seller analysis (2017-2018)

Financial entities

Willing seller analysis (2017-2018)

Financial entities

Willing seller analysis (2017-2018)

Marketers

Willing seller analysis

Generation

Willing seller analysis (2017-2018)

Load serving entities

Willing seller analysis (2017-2018)

Concerns raised by load serving entities

- Ironically, CRR restrictions and deficit offset charges implemented in 2019 have <u>reduced</u> ability of LSEs to hedge supply portfolio.
- With willing seller, all these 2019 restrictions can be removed without any risk of revenue loss to LSEs or overall revenue inadequacy.
 - Transmission limits in allocation model can be increased
 - Eliminate deficit offset charges on allocated CRRs
 - Allow entities to offer counterflow CRRs in willing seller auction (e.g., sourced at load node and sinking at gen node)
- DMM and CalCCA have requested that the ISO perform analysis of additional CRR nominations that would clear allocation process with 2019 transmission restriction removed from CRR allocation model.

LSEs continue to voluntarily sell back almost one quarter of allocated CRRs in the auction

California ISO | WEM

ISO Public

LSEs are not "natural sellers" of non-allocated congestion revenue rights

Although congestion revenues vary from year to year more than auction revenues, auctioning CRRs backed by congestion revenues <u>reduces</u> the hedge against LSEs' total energy costs that is provided by refunding congestion revenues to LSEs.

